
- Внесены в гос.реестр средств измерений РФ
- Автоматическая передача данных по GSM
- Автоматическая очистка датчика
- Не нужны реагенты для работы
Методы определения сульфатов в сточной и питьевой воде
О сульфатах
Термином «сульфат» в специальной литературе обозначают анион (SO42-) сильной двухосновной серной кислоты (неорганические сульфаты) и эфиры серной кислоты с различными ароматическими и алифатическими спиртами (органические сульфаты).
Растворимые и нерастворимые
Сульфаты в своем большинстве хорошо растворяются в воде (FeSO4, MgSO4, K2SO4, Na2SO4). Исключение составляют сульфаты металлов главной подгруппы второй группы таблицы Д. И. Менделеева: CaSO4, SrSO4, BaSO4, RaSO4, а также PbSO4. Сульфаты этих металлов выпадают в виде кристаллических осадков, которые не растворяются даже в присутствии соляной или азотной кислоты.
В поверхностных водоемах распространены двухвалентные основания бария Ba2+, кальция Ca2+, стронция Sr2+, соединения Na, К, Mg.
Неорганические ионные соединения
Неорганические сульфаты — это ионные соединения, в составе которых есть анион SO₄²⁻. Выделяют три ряда сульфатных солей:
- средние, содержащие анион SO42− (K2SO4, Na2SO4);
- кислые или гидросульфаты — с анионом HSO4— (NaHSO4, Pb(HSO4);
- основные, в составе имеющие анион SO42− и группу OH(Zn2(OH)2SO4).
Неорганические сульфаты | Растворимость в воде | Устойчивость к нагреванию |
средние | хорошо растворяются, но есть исключения: | термически устойчивы |
нерастворимы:
BaSO4, RaSO4; |
||
плохо растворяются:
CaSO4, SrSO4, PbHSO4. |
||
кислые | растворимы | · кислые сульфаты щелочных металлов разлагаются с выделением H2O, превращаясь в пиросульфаты;
· кислые сульфаты не щелочных металлов при нагревании образуют оксиды, разлагаясь с выделением SO3. |
основные | малорастворимы, совсем не растворяются или способны к гидролизации | · разлагаются при высокой T⁰ с отщеплением SO3 и образованием оксидов металлов |
Неорганические сульфаты способны образовать кристаллогидраты — вещества, в кристаллы которых входят молекулы воды. Наиболее известны кристаллогидраты:
- петагидрат сульфата меди (II) или медный купорос CuSO4 5H2O;
- декагидрат сульфата натрия или глауберова соль Na2SO4 10H2O;
- гептагидрат сульфата железа (II) или железный купорос FeSO4 7H2O;
- дегидрат сульфата кальция или гипс CaSO4 2H2
Органические сульфаты
Сложные эфиры серной кислоты и этилового спирта, название которых заканчиваются на суффикс «сульфат», могут называть сульфатами:
- (С2Н5О)2SO2 — диэтилсульфат;
- CH3OSO2OC2H5 — метилэтилсульфат;
- CH3OSO2OH — метилсульфат.
Среди органических сульфатов различают:
- алкил(арил)сульфаты — кислые эфиры серной к-ты (ROSO2OH) и их соли;
- диалкил(диарил)сульфаты — полные эфиры серной к-ты (RO)2SO2;
- пиросульфаты — соединения типа ROSO2OSO2X;
- циклические сульфаты.
Сульфаты органической природы являются мощными алкилирующими агентами (диметилсульфат) и используются в органическом синтезе. Соли сульфоновой кислоты (сульфонаты) и сложные эфиры с протяженными углеводородными остатками нашли широкое применение в качестве моющих средств.
Моющая способность сульфонатов обусловлена строением молекулы, полярная часть которой ( — SO3-Na+) обеспечивает её растворимость в воде, а крупная алкильная часть, расположенная в п-положении, придает молекуле способность растворяться в жире.
В результате этого частички жира вместе с загрязнителями диспергируются в виде мицелл и переходят в водную фазу.
Сульфаты в воде
В природных водах сульфаты присутствуют всегда. Некоторые сульфатсодержащие минералы (гипс) постоянно растворяются под действием осадков. Также в природные воды попадают сульфаты из атмосферного воздуха, где идут реакции окисления оксида серы (IV) до оксида серы (VI), процессы образования серной кислоты и ее полной или частичной нейтрализации. Преумножают сульфатное загрязнение и стоки с промышленных предприятий.
Откуда берутся в питьевой
Сульфаты обнаруживаются не только в реках, ручьях и озерах. Избыточное содержание сульфатов наблюдается в подземной воде, добытой даже из глубоких водоносных горизонтов.
Риск появления нежелательных примесей в питьевой воде возрастает, если скважина расположена:
- вблизи от очистных сооружений, где происходит удаление сульфатов химическим методом;
- рядом с нефтеперерабатывающими предприятиями;
- вблизи шахт;
- в непосредственной близости от заводов по производству удобрений;
- вблизи от предприятий целлюлозно-бумажной промышленности.
Сульфаты попадают в водоносные горизонты, когда происходит:
- растворение сульфатсодержащих пород и просачивание растворов в грунт;
- проникновение осадков в водоносный горизонт;
- разложение в воде остатков растений и животных;
- во время протекания окислительно-восстановительных реакций.
Опасность представляют и реагенты, применяемые для зимней обработки дорог, и подтекающие свалки отходов, и сточные воды производств, сбрасываемые без тщательной очистки. Загрязненные воды в период снеготаяния устремляются в поверхностные водоемы и могут попасть в зоны водозаборов, откуда потом попадают в водопровод.
Источники появления в сточных водах
Под термином «сточные воды» согласно российскому Водному кодексу объединены сточные воды централизованной системы водоотведения, дождевая и талая воды, стоки со свалок, а также другая вода, которая сбрасывается или отводится в природные водоемы после использования или которая стекает с водосборной площади.
Сульфаты обнаруживаются в стоках, образовавшихся в результате:
- обогащения полиметаллических серосодержащих руд;
- сульфатной варки целлюлозы на целлюлозно-бумажных комбинатах;
- операций по очистке нефти и нефтепродуктов;
- реагентной обработки сточной воды.
Избыточное содержание сульфатов наблюдается в стоках предприятий, использующих в технологическом цикле серную кислоту. На коксохимических заводах из аммиака и H2SO4 в больших количествах получают сельскохозяйственное удобрение — сульфат аммония. Из почвы (NH4)2SO4 вымывается с осадками в поверхностные водоемы. В зимний период дороги посыпают сульфатсодержащим противогололедным реагентом, который из ливневой канализации массово уходит в реки.
Нормы содержания и ПДК
Повышенные концентрации сульфатов ухудшают органолептические показатели водопроводной воды, оказывают влияние на здоровье человека.
Именно поэтому предельно допустимая концентрация (ПДК) сульфатов в воде, используемой для питья, строго регламентируется. По СанПиН 1.2.3685-21 «Гигиенические нормативы и требования к обеспечению безопасности и (или) безвредности для человека факторов среды обитания» санитарная норма содержания сульфатов не должна превышать 500 мг/дм3.
В ГОСТ 31940-2012 закреплены методы измерения концентрации сульфатов в питьевой воде, в том числе разлитой в бутылки. Если содержание солей серной кислоты превышает нормативы, воду перед использованием необходимо очистить.
Польза и вред сульфатов
В зависимости от преобладания в сульфатной воде того или иного компонента выделяют воды:
- глауберовые (с содержанием десятиводного кристаллогидрата сульфата натрия Na2SO410H2O);
- магнезиальные (присутствует сульфат магния MgSO4);
- гипсовые (с содержанием CaSO42H2O).
Влияние на организм человека
Особенность сульфатных вод проявляется в их выраженном воздействии на пищеварительную систему. Употребление минеральной воды с преобладанием сульфатов (более 25%) способствует:
- оттоку желчи из желчного пузыря;
- стимуляции перистальтики кишечника;
- лечению метеоризма;
- выработке желчи клетками печени;
- выведению из организма продуктов воспаления, слизи, микробов;
- ускорению обменных процессов;
- переходу пищи из желудка и усвоение в кишечнике.
Избыточное количество сульфатов (более 500 мг/дм3) придает питьевой воде горький вкус, а в концентрации 1-2 г на литр сульфатная вода оказывает слабительное действие. Отмечен эффект тормозящего влияния сульфатов на реакцию утоления жажды (Егорова, 2002), в конечном итоге приводящий к увеличению нагрузки не на почки, а на кишечник.
Человеческий организм со временем адаптируется и к более высоким концентрациям солей, но допустимое содержание сульфатов по нормативам не должно превышать 500 мг/дм3, находясь в диапазоне 100-150 мг/дм3.
Водопроводы и стоковые коммуникации
Присутствие ионов Cl—, Br—, SO2-4 и NO3 увеличивает электрическую проводимость воды и, как следствие, понижает сопротивление коррозионному току. Даже минимальное (менее 1 мг/дм3) присутствие сульфатов в воде способно спровоцировать разрушение металлических труб, влияя на коррозионные процессы следующим образом:
- непосредственно — чем выше концентрация солей, тем ниже удельное сопротивление воды;
- косвенно — через деятельность сульфатвосстанавливающих бактерий, принимающих участие в биологической коррозии.
С кальцием сульфаты образуют прочную накипь. С повышением температуры воды растворимость сульфата кальция снижается, соль выделяется из воды, оседая на поверхностях труб и нагревательных элементах. Незначительные отложения состоят преимущественно из двуводного гидрата CaSO4 2H2O (гипса), но утолщение накипи приводит к нагреванию прилегающего к металлу слоя. При 100 °С гипс превращается в полуводный гидрат
CaSO4 1/2H2O, снять который крайне затруднительно даже промыванием системы кислотой.
Круговорот сульфатов в природе
Основным резервом сульфатов, вовлекаемых в природный круговорот, в настоящее время выступает самородная сера и сульфатсодержащие минералы. Осадочные породы, особенно органические сланцы, дают большие количества сульфатов путем окисления минералов с одинаковой химической формулой FeS₂ —лучистого колчедана (марказита) и пирита.
В почвенных слоях постоянно идет окислительно-восстановительный обмен серой между сульфидами серы, находящимися в бескислородных условиях в толще почвы, и доступными сульфатами вблизи поверхности. Сульфид окисляется до сульфата в присутствии воздуха, а сульфат восстанавливается до сульфида в анаэробных условиях.
В морях в результате деятельности бактерий происходит восстановление глубоководных сульфатных отложений. Образовавшийся при этом сероводород мигрирует к поверхности воды, где окисляется кислородом атмосферного воздуха до сульфат-иона.
Значительное количество сероводорода остается в подземных водах. Если в воде присутствует железо, образовавшийся FeS способен выпасть в осадок, в результате чего из воды удаляются как ионы железа, так и сульфиды.
В почве за восстановление сульфатов отвечают почвенные бактерии, в этом случае большие количества сероводорода поступают непосредственно в атмосферу.
Сульфат-ион — основная форма серы, доступная организмам-автотрофам. Сульфаты поглощаются живыми существами, благодаря метаболизму которых восстанавливаются и входят в состав белков. При гниении отмерших организмов сера возвращается в круговорот.
Количественные методики определения по ГОСТу
Химическое титрование
С трилоном Б
В питьевой воде концентрацию сульфатов определяют по ГОСТ 31940-2012 титриметрически, с ЭДТА-Na2 (трилоном Б) (метод 1).
К пробе анализируемой воды прибавляют соляную кислоту для подкисления среды, а затем барий хлористый. Происходит осаждение сульфат-ионов и образование сернокислого бария BaSO4 с появлением в растворе характерной белой мути.
Сульфат бария BaSO4 в аммиачной среде растворяют в растворе ЭДТА-Na2 (трилона Б). Избыток ЭДТА-Na2 затем титруют раствором, содержащим ионы магния, в присутствии индикатора эриохрома черного. Титрование прекращают, когда произойдет смена окраски — синий цвет сменится на лиловый. Количество ЭДТА-Na2, израсходованного на растворение BaSO4, эквивалентно количеству сульфат-ионов во взятом объеме воды.
С хлоридом бария
По методу 2 из ГОСТ 31940-2012 сульфаты определяют титрованием анализируемой пробы воды раствором соли бария в водно-ацетоновой среде (или водно-спиртовой) при рН 1,5-2,0. Индикатором служит нитхромазо (или ортаниловый К, или хлорфосфоназо). Ионы бария связывают сульфат-ионы, образуется BaSO4 — слаборастворимый осадок. В точке эквивалентности избыток ионов бария взаимодействует с индикатором, образуя комплексное соединение. В этот момент жидкость в колбе меняет фиолетовый цвет на голубой. Чтобы устранить влияние катионов аликвотную часть раствора предварительно обрабатывают катионитом КУ-2.
Фотометрические методы определения сульфатов
Определение сульфатов нефелометрическим и турбидиметрическим методами основано на измерении интенсивности рассеянного света (нефелометрия) или света, прошедшего через мутную среду (титриметрия).
Оба метода предполагают наличие в исследуемом растворе частиц определяемого вещества, находящегося в растворе во взвешенном состоянии.
Нефелометрия
Определение сульфатов нефелометрическим методом базируется на осаждении сульфат-ионов BaCl2 в присутствии HCl и реагента-стабилизатора (желатина, крахмала). В реакции образуется сульфат бария, медленно выпадающий в осадок и образующий суспензию.
SO42- + Ba2+ = ↓BaSO4
Оптическую плотность суспензии измеряют на нефелометре, а концентрацию сульфатов в воде затем рассчитывают по предварительно построенному градуировочному графику.
Турбидиметрия
Сульфаты турбидиметрическим методом определяют на фотометре или спектрофотометре, способным измерить интенсивность помутнения водной пробы. Мутность развивается после взаимодействия находящихся в пробе сульфатов с осадительной смесью, в состав которой входит BaCl2, стабилизирующий реагент (этиленгликоль), а также этанол для снижения растворимости. Прибор фиксирует оптическую плотность помутневшего раствора относительно дистиллированной воды. Точное содержание сульфат-ионов в отобранной на анализ воде, как и в случае нефелометрии, рассчитывают по градуировочному графику.
Очистка вод от сульфатов
Удаление в быту
Вода с избытком сульфатов кроме неприятных вкусовых ощущений и расстройства кишечника, способна вывести из строя бытовую технику.
Удалить сульфаты из воды народными средствами не получится. Лучше всего установить в квартире или коттедже фильтр с системой обратного осмоса. Вода с растворенными в ней солями под давлением проходит через полупроницаемую мембрану фильтра, на которой оседают минеральные соли, бактерии и тяжелые металлы, а очищенная вода беспрепятственно проходит дальше. Фильтр обратного осмоса позволяет очистить воду на 98%, снизив жесткость и устранив риск для здоровья и бытовых приборов.
Предприятия водоподготовки
Очистка больших объемов загрязненной сульфатами воды осуществляется на производствах тремя основными способами:
- Реагентным способом, основанным на осаждении сульфатов в виде нерастворимого осадка сульфата кальция и последующего удаления его из воды. Для этих целей применяют:
- известь СаО;
- хлорная известь 3Ca(OH)₂ 2Cl₂;
- строительная комовая известь («пушонка») Ca (OH)₂.
Сточную воду обрабатывают известковым молоком в присутствии коагулянта и флокулянта. При взаимодействии оксида кальция CaO с водой образуется гидроксид кальция Ca(OH)2, осаждающий сульфаты из сточной воды.
Коагулянт повышает эффективность сорбции сульфатов на хлопьевидном осадке. Добавление флокулянта сокращает дозу коагулирующего реагента, повышает плотность образующихся хлопьев и, в конечном итоге, облегчает отделение плотного осадка от остальной воды в момент фильтрации.
- Методом ионного обмена на фильтрах-умягчителях колонного типа, где в качестве ионообменной смолы используются сильноосновные или слабоосновные аниониты. Аниониты способны обменивать сульфат на гидроксид ионы или хлорид ионы. Регенерируют ионообменные смолы раствором гидроксида натрия или хлорида натрия.
- Методом обратного осмоса, когда вода проходит через многослойную синтетическую мембрану, способную задерживать до 98% минеральных солей, в том числе и сульфаты. Примеси затем отводятся в дренаж, а пермеат (очищенная вода) направляется потребителю.
Сульфаты, присутствующие в питьевой воде в допустимых СанПиН концентрациях, для человека не опасны. Увеличение содержания сульфат-ионов в воде ухудшает качество жизни, со временем выводит из строя бытовую технику и водопроводные коммуникации. Поэтому так важно точно знать концентрацию сульфатов в воде и при малейшем подозрении на превышение санитарных и технических нормативов делать анализ этого параметра в аккредитованной лаборатории.

- Внесены в гос.реестр средств измерений РФ
- Автоматическая передача данных по GSM
- Автоматическая очистка датчика
- Не нужны реагенты для работы